

Temporal Convolutional Network (TCN)

S. Bai, J. Z. Kolter, V. Koltun, 2018

Speaker: Shih-Shinh Huang July 10, 2024

S. Bai, J. Z. Kolter, V. Koltun, , "An Empirical Evaluation of Generic Convolution and Recurrent Networks for Sequence Modeling", arXiv, 2018.

Outline

- Introduction
 - Motivation
 - Central Idea
 - Architecture Overview
- 1D Dilated Convolution
 - Definition
 - Padding Rule

- Residual Block
 - Dilated Conv. Layer
 - Residual Shortcut
 - Long-Memory Setting

- Motivation
 - <u>sequence modeling</u> is an essential task in many areas, such as weather/stock price prediction.
 - Given: an input sequence $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_t$ to time t
 - Goal: predict the output $\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_t$ sequentially

- Motivation
 - **sequence modeling** task has two properties
 - Causal Constraint: predicting y_t depends <u>only on the</u> <u>past</u> $x_0, x_1, ..., x_t$ and <u>not on future</u> $x_{t+1}, x_{t+2}, ...$
 - Length Constraint: the length of the output sequence $\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_t$ is the same as the input $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_t$

- Motivation
 - <u>recurrent networks</u> are considered as the go-to solution for sequence modeling tasks.

Unit: Simple Recurrent Neural Network (RNN) Link: https://youtu.be/Or9QSDqzOK0 Web: <u>http://gg.gg/quarter</u>

- Central Idea
 - distill the design in the convolutional network to a simple network for sequence modeling.
 - 1D dilated convolution with zero padding: meet both the <u>causal</u> and <u>length constraints</u>
 - residual shortcut: allow for <u>very deep network</u> for extracting effective features.

V. D. Oord, et. al., "A Generative Model for Raw Audio," arXiv:1609,03499, 2016

Kaiming He, et. al., "Deep Residual Learning for Image Classification", CVPR 2016

residual

• Architecture Overview

WN: weight normalization

1D Dilated Convolution

- Definition
 - $\mathbf{X} = {\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_t}$: input sequence with channel number = c (i.e. 2)
 - $\mathbf{W} = {\mathbf{w}_0, \mathbf{w}_1, \dots, \mathbf{w}_{k-1}}$: kernel with size = k (i.e. 3) and channel number = c

• Definition $(\mathbf{X} *_{d} \mathbf{W})$ $k = 3 \Rightarrow (\mathbf{X} *_{2} \mathbf{W})(t) = \sum_{\substack{k=0\\i \equiv 0}}^{k-1} \operatorname{wr}_{i} \cdot \mathbf{X}_{tt-2b \times ii}$ dilation factor

 $(\mathbf{X} * \mathbf{W})(t = 7) = \underline{\mathbf{w}_0 \cdot \mathbf{x}_{7-0}} + \underline{\mathbf{w}_1 \cdot \mathbf{x}_{7-2}} + \underline{\mathbf{w}_2 \cdot \mathbf{x}_{7-4}}$

• Definition $(\mathbf{X} *_{d} \mathbf{W})$ $(X * W)(t = 6) = w_0 \cdot x_{6-0} + w_1 \cdot x_{6-2} + w_2 \cdot x_{6-4}$ $(X * W)(t = 5) = w_0 \cdot x_{5-0} + w_1 \cdot x_{5-2} + w_2 \cdot x_{5-4}$ $(X * W)(t = 4) = w_0 \cdot x_{4-0} + w_1 \cdot x_{4-2} + w_2 \cdot x_{4-4}$? * W)(X = W)(X = W)(t = 6)介介 X₅ **X**₃ X₄ X₇ Wว W₀ W₁ W_0 Wo W_0

- Padding Rule
 - add $(k-1) \times d$ zero vectors to meet the <u>length</u> <u>constraint</u>

$$(\mathbf{X} * \mathbf{W})(t = 0) = \mathbf{w}_0 \cdot \mathbf{x}_{0-0} + \mathbf{w}_1 \cdot \mathbf{x}_{0-2} + \mathbf{w}_2 \cdot \mathbf{x}_{0-4}$$

1D Dilated Conv. with factor = 2 $(X *_2 W)(t)$

1D Dilated Conv. with factor = 2 $(X *_2 W)(t)$

- Dilated Conv. Layer
 - convert no. channel c_{in} of **X** to c_{out}
 - no. kernel: $c_{out} (= 3)$

The second sec

- Dilated Conv. Layer
 - output the residual sequence (no. channel: c_{out})
 - no. kernel: $c_{out} (= 3)$
 - kernel channel: $c_{out}(=3)$

- Residual Shortcut
 - bypass the convolution operations
 - identity ($c_{in} = c_{out}$): directly forward input
 - projection (*c_{in} ≠ c_{out}*): convert the input to have the same channel number as the output

- Residual Shortcut
 - bypass the convolution operations
 - identity ($c_{in} = c_{out}$): directly forward input
 - projection ($c_{in} \neq c_{out}$): adjust the input to match the channel number of the output

- Residual Shortcut
 - achieve channel mapping via 1D dilated conv.
 - no. kernel: $c_{out} (= 3)$
 - kernel channel: $c_{in} (= 2)$
 - kernel size: <u>1</u>

- Long-Memory Setting
 - make the network look very far into the past for prediction (long receptive field)
 - set the dilation factors *d* of residual blocks <u>exponentially</u> <u>increasing</u> relative to the depth of the network

