

Simple Recurrent Neural Network (RNN):

An Example of Price Forecasting

Speaker: Shih-Shinh Huang

July 11, 2024

Outline

- Introduction
 - About RNN
 - Model Concept
 - Price Forecasting
- RNN Architecture
 - Model State and Parameters
 - Recurrent Inference
 - Price Forecasting

- RNN Training
 - Training Process
 - Loss Definition

- About RNN
 - The RNN is a model for dealing with <u>sequential</u> <u>data</u>, $x_1, x_2, ..., x_N$, consisting of N items.
 - The length of the sequence (*N*) changes over time.
 - The data items are mutually dependent.

- Model Concept
 - recurrence: repeatedly performs the same task for every data item in a sequence.
 - \Rightarrow allow the input to be the various-length sequence.

- Model Concept
 - state (*h*): memorize the passed information.

 \Rightarrow model the dependency among data items

- Price Forecasting
 - input: a sequence of the past prices

• output: the next price in the sequence

- Price Forecasting
 - **normalize** the raw prices p_i to the values q_i

$$q_i = (p_i - \mu) / \sigma \rightarrow$$
 standard deviation mean

raw 84.83 84.84 85.14 85.40 85.53 87.27 86.63 p_i $\mu = 85.52$ $\sigma = 0.97$ normalized -0.71 1.29 -0.72 -0.37 -1.2 0.06 2.01 q_i

- Price Forecasting
 - take <u>four</u> values for predicting the next one

- Model State and Parameters
 - model state (*h*): memorizes past information
 - *h* is <u>hidden</u> (cannot be directly observed)
 - h is in the form of a |h|-d vector.

$$h = [h_1, h_2, \dots, h_{[h]}]$$

vector dimension is a constant and specified by the user

- Model State and Parameters
 - model parameters (θ): weights <u>shared</u> across times

input weights state transition weights output weights

- Recurrent Inference: Formulation
 - given: input x_t and the previous state h_{t-1}
 - objective: output y_t
 - update stage: evolve the state from h_{t-1} to h_t
 - prediction stage: use h_t to produce y_t

- Recurrent Inference: update
 - Step 1: transform the input x_t to the state u_t by W.

$$(u_t)^T = \mathbf{W} \cdot (\mathbf{x}_t)^T \Longrightarrow \mathbf{W} : |\mathbf{h}| \times |\mathbf{x}| \text{ matrix}$$

|h|-d state vector **|x|**-d input vector

• Step 2: use **U** to evolve the state from h_{t-1} to h_t^-

$$(h_t^-)^T = \mathbf{U} \cdot (h_{t-1})^T \Longrightarrow \mathbf{U} : |\mathbf{h}| \times |\mathbf{h}| \text{ matrix}$$

 $|\mathbf{h}| \text{-d state vector}$

- Recurrent Inference: update
 - Step 3: fuse the data from the input and the past
 by <u>adding</u> u_t and h_t⁻
 - Step 4: apply tanh() to compute the state h_t

- Recurrent Inference: prediction
 - transform the state h_t to output y_t by **V**.

$$(y_t)^T = \mathbf{V} \cdot (\mathbf{h}_t)^T \Longrightarrow \mathbf{V} : |\mathbf{y}| \times |\mathbf{h}| \text{ matrix}$$

|y|-d output vector |h|-d state vector

- Price Forecasting
 - take four values for predicting one price

 $\Rightarrow |\mathbf{x}| = 4 \qquad |\mathbf{y}| = 1$

• model hidden state *h* as a 2-D vector and initialize to zero vector

$$|\mathbf{h}| = 2$$

$$\Rightarrow h_0 = [0.0, 0.0]$$

- Price Forecasting
 - model parameters
 - W (input \rightarrow state) : 2 × 4 matrix
 - **U** (state \rightarrow state) : 2 × 2 matrix
 - V (state \rightarrow output): 1 × 2 matrix

 $W = \begin{bmatrix} -0.14 & -0.09 & 0.39 & 0.00 \\ & & & \\ -0.48 & 0.06 & 0.30 & 1.09 \end{bmatrix}_{2 \times 4}$

$$\mathbf{U} = \begin{bmatrix} -0.34 & 0.59 \\ & & \\ -0.52 & 0.32 \end{bmatrix}_{2 \times 2} \quad \mathbf{V} = \begin{bmatrix} 0.10 & 1.22 \end{bmatrix}_{1 \times 2}$$

• Price Forecasting: update

-0.72 -0.71 -0.37 -1.2 0.06 2.01 1.29

$$x_1 = [-0.72, -0.71, -0.37, -1.2]$$

• Step 1: transform the x_1 to u_1 by **W**.

$$(u_1)^T = \mathbf{W} \cdot (x_1)^T$$

$$\begin{bmatrix} \mathbf{0} & \mathbf{02} \\ -\mathbf{1} & \mathbf{16} \end{bmatrix} = \begin{bmatrix} -\mathbf{0} & \mathbf{14} & -\mathbf{0} & \mathbf{09} & \mathbf{0} & \mathbf{39} & \mathbf{0} & \mathbf{00} \\ -\mathbf{0} & \mathbf{14} & -\mathbf{009} & \mathbf{0} & \mathbf{39} & \mathbf{000} \end{bmatrix} \times \begin{bmatrix} -\mathbf{0} & \mathbf{72} \\ -\mathbf{0} & \mathbf{71} \\ -\mathbf{000} & \mathbf{71} \\ -\mathbf{000} & \mathbf{71} \\ -\mathbf{1000} & \mathbf{71} \\ -\mathbf{1000} & \mathbf{71} \end{bmatrix}$$

• Price Forecasting: update

-0.72 -0.71 -0.37 -1.2 0.06 2.01 1.29

 $h_0 = [0.0, 0.0]$

• Step 2: evolve the state from h_0 to h_1^- by U

$$(h_1^{-})^T = \mathbf{U} \cdot (h_0)^T$$
$$\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} -\mathbf{0} & \mathbf{34} & \mathbf{0} & \mathbf{59} \\ -\mathbf{0} & \mathbf{52} & \mathbf{0} & \mathbf{32} \end{bmatrix} \times \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

• Price Forecasting: update

-0.72 -0.71 -0.37 -1.2 0.06 2.01 1.29

• Step 3: fuse u_1 and h_1^- by <u>addition</u> $(u_1)^T + (h_1^-)^T = \begin{bmatrix} \mathbf{0} \cdot \mathbf{02} \\ -\mathbf{1} \cdot \mathbf{16} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \cdot \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \cdot \mathbf{02} \\ -\mathbf{1} \cdot \mathbf{16} \end{bmatrix}$

• Step 4: apply tanh() to compute the state h_1

$$\tanh\left(\begin{bmatrix}\mathbf{0},\mathbf{0}\mathbf{2}\\ -\mathbf{1},\mathbf{16}\end{bmatrix}\right) = \begin{bmatrix}\tanh(\mathbf{0},\mathbf{0}\mathbf{2})\\ \tanh(-\mathbf{1},\mathbf{16}\end{bmatrix} \quad \Box > \quad (h_1)^T = \begin{bmatrix}\mathbf{0},\mathbf{0}\mathbf{2}\\ -\mathbf{0},\mathbf{8}\end{bmatrix}$$

• Price Forecasting: prediction

- transform the h_1 to y_1 by \mathbf{V} $(y_1)^T = \mathbf{V} \cdot (h_1)^T$ $[-0.98] = [0.10 \quad 1.22] \times \begin{bmatrix} 0.02 \\ -0.8 \end{bmatrix}$
- un-normalize y_1 to the real price

price = y_ρ>98 * μ.97 + 85.52 = 84.56

- Training Overview
 - split data sequences into k data segments
 S = < S₁, S₂, ... S_k >
 - randomly select a data segment S_i from **S**

 $S_i = x_1^{(i)}, x_2^{(i)}, \dots, x_{n_i}^{(i)}$

- flow through RNN to produce the output sequence $y_1^{(i)}, y_2^{(i)}, \dots, y_{n_i}^{(i)}$
- compute prediction loss for updating W, U, V

- Loss Definition
 - measure the error between the prediction

 y_1, y_2, \dots, y_N and the ground truth $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_N$

mean square error (MSE) (value prediction)

$$L_{MSE} = \frac{1}{N} \times \sum_{i} (y_i - \hat{y}_i)^2 \text{ total square error}$$

average

• cross entropy (classification)

$$L_E = -\sum_i \hat{y}_i \times \log(y_i)$$

• Loss Definition: Price Forecasting

• Loss Definition: Price Forecasting

